IDUINO for Maker's life

Analoeg Temperature Sensor(ST1147)

1. Introduction

A thermistor is a type of resistor whose resistance is dependent on temperature, more so than in standard resistors. The word is a portmanteau of thermal and resistor. Thermistors are widely used as inrush current limiter, temperature sensors (NTC type typically), self-resetting overcurrent protectors, and self-regulating heating elements.

The Module's feature as below:

Feature	Value
Model No.	NTC-MF52 3950
Temperature Range	$-55^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}$
Accuracy	$+/-0.5^{\circ} \mathrm{C}$
Pull-up resistor	$10 \mathrm{~K} \Omega$

2.Pinout

Temperature convert Formula

Here we use Steinhart-Hart equation to calculate the corresponding temperature. The equation is

$$
\frac{1}{T}=A+B \ln (R)+C[\ln (R)]^{3},
$$

where:
T is the temperature (in Kelvins)
R is the resistance at T (in ohms)

IDUINO for Maker's life

A, B, and C are the Steinhart-Hart coefficients which vary depending on the type and model of thermistor and the temperature range of interest. (The most general form of the applied equation contains a $[\ln (\mathrm{R})]^{\wedge} 2$ term, but this is frequently neglected because it is typically much smaller than the other coefficients).

Note: For this module, the recommended coefficients of A, B, C are
A equals $0.001129148 ;$
B equals 0.000234125;
C equals 0.0000000876741;
More, the same item products has a little bit different A, B, C coefficients, which depends your environmental temperature. If the recommended coefficients are not accurate enough, you'd better amend the A,B,C coefficients by Thermistor Calculator tool.

3 Example

This is a simple code for the NTC thermistor module, Connection as below:

Example Code:

```
#include <math.h>
```

double Thermistor(int RawADC) \{
double Temp;
double Res;
Res $=(10000.0$ * RawADC) / (1023 - RawADC);
Temp $=\log ($ Res $) ;$
Temp $=1 /(0.001129148+0.000234125$ * Temp +
0.0000000876741 * Temp * Temp * Temp);
Temp = Temp - 273.15;
return Temp;
\}
void setup() \{
Serial.begin(9600);
\}
void loop() \{
Serial.print(Thermistor(analogRead(1)));
Serial.println(" Celsius");
delay(1000);
\}

